首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64061篇
  免费   4862篇
  国内免费   5437篇
电工技术   1247篇
技术理论   1篇
综合类   2756篇
化学工业   7465篇
金属工艺   28002篇
机械仪表   3134篇
建筑科学   856篇
矿业工程   1130篇
能源动力   2076篇
轻工业   793篇
水利工程   51篇
石油天然气   756篇
武器工业   803篇
无线电   2403篇
一般工业技术   13209篇
冶金工业   6648篇
原子能技术   711篇
自动化技术   2319篇
  2024年   187篇
  2023年   1937篇
  2022年   1929篇
  2021年   2525篇
  2020年   2711篇
  2019年   2305篇
  2018年   2224篇
  2017年   2647篇
  2016年   2610篇
  2015年   2737篇
  2014年   3641篇
  2013年   5144篇
  2012年   3490篇
  2011年   4057篇
  2010年   3114篇
  2009年   3348篇
  2008年   2586篇
  2007年   3725篇
  2006年   3648篇
  2005年   2913篇
  2004年   2575篇
  2003年   2207篇
  2002年   1903篇
  2001年   1778篇
  2000年   1474篇
  1999年   1298篇
  1998年   955篇
  1997年   899篇
  1996年   858篇
  1995年   621篇
  1994年   566篇
  1993年   389篇
  1992年   368篇
  1991年   238篇
  1990年   242篇
  1989年   183篇
  1988年   100篇
  1987年   45篇
  1986年   33篇
  1985年   19篇
  1984年   31篇
  1983年   13篇
  1982年   22篇
  1981年   17篇
  1980年   8篇
  1979年   5篇
  1978年   10篇
  1976年   6篇
  1959年   5篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
31.
Referring to the total surface existing in wheat dough, gluten–starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface modifications or reconstitution experiments, failed to show unambiguous relations of interface characteristics and dough rheology. Observing hybrid artificial dough systems with defined particle surface functionalization gives a new perspective. Since surface functionalization standardizes particle–polymer interfaces, the impact on rheology becomes clearly transferable and thus, contributes to a better understanding of gluten–starch interfaces. Based on this perspective, the effect of particle/starch surface functionality is discussed in relation to the rheological properties of natural wheat dough and modified gluten–starch systems. A competitive relation of starch and gluten for intermolecular interactions with the network-forming polymer becomes apparent during network development by adsorption phenomena. This gluten–starch adhesiveness delays the beginning of non-linearity under large deformations, thus contributing to a high deformability of dough. Consequently, starch surface functionality affects the mechanical properties, starting from network formation and ending with the thermal fixation of structure.  相似文献   
32.
Heteroatomic doping is an effective way to optimize the electronic structure of carbon nitride to boost photocatalytic performance. However, the extra introduced defects could result in the decrease of its crystallinity. In this work, crystalline K–I co-doped carbon nitride (K–I–CCN) was simply synthesized from molten salt ionthermal post-calcination in nitrogen atmosphere. Structure characterization results indicate that compared to K–CCN synthesized from conventional molten salt heat treatment in air, nitrogen heating atmosphere is more conductive for the formation of homogeneous pore structure of the catalyst, which has larger surface area and pore volume, while could repairing some defects and resulting in better polymerization crystallization. In addition, except the implanting of K, I doping is still retained after nitrogen heat treatment, thus forming K–I co-doping structure. Due to the positive charge effect of K–I co-doping, K–I–CCN has a narrower band gap, higher surface charge density and stronger charge transport, so it performs significantly enhanced photocatalytic H2 evolution activity from water splitting.  相似文献   
33.
Classical Fourier's theory is well-known in continuum physics and thermal sciences. However, the primary drawback of this law is that it contradicts the principle of causality. To explore the thermal relaxation time characteristic, Cattaneo–Christov's theory is adopted thermally. In this regard, the features of magnetohydrodynamic (MHD) mixed convective flows of Casson fluids over an impermeable irregular sheet are revealed numerically. In addition, the resulting system of partial differential equations is altered via practical transformations into nonlinear ordinary differential equations. An advanced numerical algorithm is developed in this respect to get higher approximations for temperature and velocity fields, as well as their corresponding wall gradients. For validating our numerical code, the current outcomes are compared with the available literature results. Moreover, it is revealed that the velocity field is more prominent in the suction flow situation as compared with the injection flow case. It is also found that the Casson fluid is hastened in the case of lower yield stress. Larger values of thermal relaxation parameters create a lessening trend in the temperature distribution and its related boundary layer breadth.  相似文献   
34.
《Ceramics International》2022,48(9):12585-12591
In this study, zinc oxide (ZnO) nanofibers were prepared using the electrospinning method, and the effects of different spinning voltages and annealing temperatures on the fiber structure were tested. La0.8Sr0.2FeO3 (LSFO) perovskite film was prepared by a sol-gel method. Then we dip LSFO on ZnO nanofiber and grow it on the interdigital gold electrode substrate for gas sensors. The results show that the ZnO/LSFO heterostructure gas sensor has a good sensing response to H2S gas and exhibits good gas selectivity. The best gas response is 52.17% under 4 ppm H2S and work temperature 200°C, which has good recovery and reproducibility.  相似文献   
35.
《Ceramics International》2022,48(17):24346-24354
The borided layer was prepared on the surface of the Ti–5Mo–5V–8Cr–3Al alloy by powder-pack boriding at 1000°C-10h. SEM, EPMA and TEM were used to investigate the effects of alloying elements (Al, V, Mo and Cr) on the growth of TiB whiskers in the borided Ti–5Mo–5V–8Cr–3Al alloy. Wear properties of borided Ti–5Mo–5V–8Cr–3Al alloy were investigated using dry reciprocating friction tests. SEM results show that the thickness of boride layer in Ti–5Mo–5V–8Cr–3Al alloy is thinner than that in the Cp-Ti. This is attributed to the enrichment of alloying elements especially V in TiB/substrate by TEM, which hinders the diffusion of B atoms, thus resulting in the short and thick TiB whiskers in Ti–5Mo–5V–8Cr–3Al alloy. Borided Ti–5Mo–5V–8Cr–3Al alloy has the better wear resistance than as-received alloy.  相似文献   
36.
Metal-support interaction and catalyst pretreatment are important for industrial catalysis. This work investigated the effect of supports (SiO2, CeO2, TiO2 and ZrO2) for Cu–Pd catalyst with high Cu/Pd ratio (Cu/Pd = 33.5) regarding catalyst cost, and the reduction temperatures of 350 °C and 550 °C were compared. The activity based on catalyst weight follows the order of Si > Ce > Zr > Ti when reduced at 350 °C. The reduction temperature leads to the surface reconstruction over the SiO2, CeO2 and TiO2 catalysts, while results in phase transition over Cu–Pd/ZrO2. The effect of reduction temperature on catalytic performance is prominent for the SiO2 and ZrO2 supported catalysts but not for the CeO2 and TiO2 ones. Among the investigated catalysts, Zr-350 exhibits the highest methanol yield. This work reveals the importance of the supports and pretreatment conditions on the physical-chemical properties and the catalytic performance of the Cu–Pd bimetallic catalysts.  相似文献   
37.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
38.
Significant efforts have been made to develop highly active non-noble metal-based, affordable metallic and stable electro-catalysts for hydrogen evolution reaction (HER). Strong acid and bases are now used in HER operations to achieve large-scale, sustained H2 fuel production. However, few studies have utilized phosphate-buffered neutral electrolytes (PBS) in the field of neutral electrolyte technology. In this work, a certain alloys with a Ni–Cr basis have been produced as favorable components for the HER under neutral conditions. Additionally, the current investigations are emphasizing on the concentration of buffer phosphate species in the HER activity of various materials. By employing polarization and electrochemical impedance spectroscopy (EIS) in neutral solutions, the electro-catalytic activity of new alloys on HER was evaluated. According to the preliminary findings, the examined Ni–Cr-based alloys show superior HER catalytic activity in neutral electrolytes. Additionally, the Ni–Cr alloy matrix with Fe and Mo added enhances HER electrocatalytic efficiency while lowering interfacial charge transfer resistance. Due to its low overpotential of ?297 mV @ 10 mA cm?2 and Tafel slope of 94 mV dec?1 in 1.0 M PBS media, the Ni–Cr–Mo–Fe alloy exhibits an efficient HER, suggesting that the Ni–Cr–Mo–Fe electrode will be a potential noble metal-free electro-catalyst for HER. The Ni–Cr–Mo–Fe cathode is a readily available and affordable material for the production of HER in neutral medium.  相似文献   
39.
Walnut flour (WF), a by-product of walnut oil production, is characterised by high polyunsaturated fatty acids, proteins, and fibre contents and presents suitability for bakery products. However, when using non-traditional ingredients, it is essential to evaluate the effect on the quality properties of the final product. So, this work aimed to assess the impact of WF on the technological, physicochemical, and sensory properties of gluten-free (GF) cakes. WF was added at a flour blend (cassava (CS) and maize (MS) starches and rice flour) at 0, 10%, 15%, and 20%. The results showed that WF modified starch gelatinisation, increased amylose–lipid complex (ALC) content, and made crumbs easier to chew. Besides, the total dietary fibre (TDF) and protein content significantly increased. Cakes with 15% WF presented the highest specific volume (SV) and no differences in overall acceptability with respect to control. Hence, WF is a suitable ingredient for gluten-free bakery products.  相似文献   
40.
This study investigated the effect of 5 freeze–thaw cycles (freezing at −18°C for 12 h and then thawing at 4°C for approximately 12 h) on the meat quality, proximate composition, water distribution and microstructure of bovine rumen smooth muscle (BSM). As the number of freeze–thaw cycles increased, BSM pH, shear force, water content and protein content decreased by 3.06%, 35.50%, 14.49% and 21.11%, respectively, whereas BSM thawing loss, cooking loss, pressing loss, total aerobic count (TAC), ash content and fat content increased by 108.12%, 47.75%, 78.33%, 90.99%, 105% and 35.20%, respectively. The freeze–thaw cycles resulted in greater protein and lipid oxidation, as evidenced by a 36.46% reduction in the sulfhydryl content and a 209.06% and 338.46% increase in the carbonyl and malondialdehyde contents, respectively. Ice crystal formation disrupted the structural integrity of the muscle tissue. Low-field nuclear magnetic resonance results showed that the freeze–thaw cycles prolonged the relaxation times (T2b, T21 and T22), indicating that immobile water shifted to free water, and consequently, free water mobility increased. After 3 freeze–thaw cycles, the decline in shear force slowed, the increase in thawing loss became accelerated, and the TAC approached the domain value (6 log colony-forming units/g). Therefore, the number of freeze–thaw cycles of smooth muscle during transport, storage and distribution should be controlled to 3 or fewer. The current results provide a theoretical basis and data support for the further utilisation and culinary processing of smooth muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号